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Abstract—Unsupervised clustering plays a dominant role in detailed landcover identification specifically in agricultural and environmental 
monitoring of high spatial resolution remote sensing images. A method called Approximate Spectral Clustering enables spectral 
partitioning for big datasets to extract clusters with different characteristic without a parametric model. Various information types are used 
through advanced similarity criteria. Selection of similarity criterion optimal for the corresponding application is required. To solve this 
issue a Spectral Clustering Method is proposed which fuses partitioning obtained by distinct similarity representations. This Spectral 
Clustering Ensemble adopts neural Quantization in the place of Random Sampling, and advanced similarity criterion in the place of 
Gaussian kernel distance with distinct decaying parameters, and a two level ensemble. The built up areas in the high resolution images 
can be detected using unsupervised detection. In this process first, a large set of corners from each of the input images are extracted by 
an improved Harris corner detector. Then, the extracted corners are incorporated into a likelihood function to discover candidate regions 
in each input image. Given a set of candidate build-up regions, in the second stage, the problem of build-up area detection is concised as 
an unsupervised grouping problem. The performance of these algorithms is evaluated by Accuracy, Adjusted Rand Index (ARI) and 
Normalized Mutual Information (NMI). Experimental results show a significant betterment of the resulting partitioning obtained by the 
proposed ensemble, with respect to the evaluation measures in the applications. 

Index Terms— Spectral clustering (SC), cluster ensemble, clustering methods, geodesic similarity, land-cover identification, pattern 
identification, similarity criterion. 

———————————————————— 
 

 

1  INTRODUCTION 

The Spatial resolution of remote-sensing images has become 
below meter resolution with increase in number of spectral 
bands. Because of very high spatial resolution enables 
detailed spectral, textural, or structural representation to get 
accurate information in either supervised or unsupervised 
manner for agricultural and environmental control, urban 
monitoring and surveillance, disaster management, and 
homeland security (see [1]–[3] and references therein). 
Supervised approaches require more expert time and 
labelled training points (which are often hard and expensive 
to get since they can be purely obtained only with 
staticmeasurements [4]). It becomes more challenging for 
agricultural monitoring where crop calendar, seasonal 
changes, and regional changes play a significant role in 
spectral signatures of the land cover/use classes [5], [6]. 
Consequently, achieving supervised classification 
performances with unsupervised approaches (which need 
no labelled points and only limited expert interaction) is of 

great importance for effective agricultural control at the 
state level. 

 Popular unsupervised k-means method and its 
variant ISODATA methods are usually poor in performance 
due to their centroid based parametric methods which 
produce (hyper) spherical clusters [5]. Approaches 
alternatively without centroid models (hierarchical 
clustering [8], neural clustering [9], spectral clustering (SC) 
to name a few) are proved more successful than k-means for 
remote-sensing images. Among them, SC, which has the 
ability to extract clusters of distinct characteristics without 
any parametric model, has become recently popular [10]–
[13]. Because of its computational complexity, SC is 
performed for very high spatial resolution remote-sensing 
images through a two-step approach, i.e., the Spectral 
Clustering is applied on the data representatives chosen by 
sampling or quantization [10], [16]. This enables the 
usefulness of Spectral Clustering for larger remote-sensing 
images and combines different information types like 
distance, density, and topology to produce a powerful 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 7, Issue 11, November-2016                                                                                        663 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org 

information representation for extracting accurate cluster 
structure [17]. Still, it requires an optimum selection for 
similarity definition adjust to the application requirements. 
An alternative of empirical determination of optimal 
conditions, the partitioning acquired with different settings 
can be fused by ensemble learning. 

 The ensemble methods consolidate the partitioning 
obtained by distinct input or feature sets, distinct methods, 
or the same method with many parameter settings, using 
various ways such as majority voting, evidence 
accumulation, hyper graph operations, metaclustering, or 
mixture models [10], [18]. When they are used to merge the 
decisions of the same method with several parameter 
settings, as in Spectral Clustering ensembles (SCE) [10], they 
avoid the need to determine the optimal parameter values. 
For instance, the SCE in [10], which uses random sampling 
(Nystrom method [14]) in conjunction with maximum 
voting and metaclustering algorithm, clubs partitionings 
obtained with distinct kernel parameter values in similarity 
definition, for segmentation of relatively small SAR images 
[10]. The same approach is used for image segmentation [22] 
also. In spite of the ensemble approach, distinct parameter 
windows, specific to the datasets, are used to attain high 
performance [10]. In addition, when random sampling is 
used for Spectral Clusterimg of large datasets, out-of-sample 
labelling may become problematic [16], [24]. 

 In this paper, a Spectral Clustering Ensemble (SCE) 
is proposed for unsupervised clustering of large remote-
sensing images. The SCE is novel in three ways. First, we 
acquire the data representatives using neural gas [25] 
(instead of Nystrom approximation), to get less quantization 
errors and address out-of-sample labelling problem. Second, 
we employ the recent similarity definitions [13], [17] 
utilizing various information types, as a substitute to the 
ordinary Gauss kernel distance with different parameter 
values. Third, we have a two-level ensemble method which 
acquires a combined decision for each similarity criterion 
and then fuses these decisions into a unique label. We test 
the SCE performance on commonly available remote-
sensing data and remote-sensing images for agricultural 
control. Depending on the calculation by Accuracy, adjusted 
Rand index (ARI) and normalized mutual information 
(NMI), we show that the proposed SCE achieves high 
performance with respect to all three evaluation measures. 
 
2 IMPLEMENTATIONOFCLUSTERING 
PROCESS 
 

2. 1  Spectral Clustering Ensemble 
The proposed SCE combines the partitioning obtained by 
Spectral Clustering with different similarity criteria. It has 
two sections: Spectral Clustering and ensemble learning. 
Now, this Clustering applies SC on a reduced set of data 
representatives preferred by sampling or quantization [12], 
[14]–[16] so that it enables the use of SC in remote-sensing 
images to obtain clusters of different characteristics without 
using a parametric model. Sampling based SCs are faster 
than quantization based SCs at a cost of a lower clustering 
performance because of relatively high quantization errors 
and out-of-sample labelling problem [12], [16], [24]. The 
neural gas quantization [25] is shown more successful than 
k-means and its variants for this SC in remote-sensing image 
analysis [12], [13]. After choosing representatives, this 
Spectral Clustering is similar to the normal Spectral 
Clustering approaches. Still, the use of representatives in 
proposed SC enables multifold based similarity definitions 
like data topology and local density, in addition to the 
common distance-based similarities [13], which yields 
distinct partitioning. Ensemble learning combines the 
emerging partitionings to have a uniqueness on the label of 
data representatives. Then, the label of each representative 
is referred to its corresponding image pixels. An outline of 
the SCE method is shown in Fig. 1 and summarized in Table 
I. We now briefly explain the SCE. 

 
Figure. 1. ASC ensemble (ASCE). Spectral or spatial features relevant 
to remote-sensing application are extracted. The Nrdata representatives 
are selected by neural gas quantization of these features. The data 
representatives are partitioned by SC using ns similarity criteria in 
Section II-C with nkmk-means runs. The resulting partitions are merged 
with cluster ensemble as explained in Section II-D. The ensemble labels 
of the representatives are assigned to their corresponding data points 
(pixels). 

 
 

TABLE 1 
Approximate Spectral Clustering Ensemble 

===================================================== 
1. Spectral Clustering Ensemble 
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Input: nsnkmpartitioning of the Nr representatives. 
-Obtain a similarity matrix SCEa using the number of 
identically laballed representatives among nkmdifferent 
partitionings of each similarity criterion. 
-Apply spectral clustering based on these SCEato obtain ns 
first level ensemble partitionings. 
-Obtain a similarity matrix SCEb using the number of 
identically labelled representatives among the arising ns 
ensemble partionings. 
-Apply spectral Clustering based on SCEb. 
Output: Final partitioning of Nr representatives. 
2. Assign the representatives’ labels to their corresponding pixels.   
===================================================== 
 

2. 1. 1 Data Representatives by Neural Gas 
Quantization 

 As a first step in ASCE, we obtain data 
representatives by neural gas quantization [25]. Being a 
neural learning paradigm, the neural gas [25] quantizes the 
data points in a topology preserving manner based on 
neighborhood ranking. Its randomly initialized neural units 
evolve to the quantization representatives with an iterative 
learning: a data point v is randomly selected from the 
dataset at each step, and its best-matching unit (BMU) wiis 
found by the minimum distance  
 ||v − wi|| ≤ ||v − wj||.   (1) 

Then, the neural units wjneighbor to the BMU wiare 
determined by a neighborhood function hτ(wj) = exp(−ρwi/τ) 

based on ρwjwhich is the rank of the distance of wjto v. Note 
that the rank ρwi= 0. Finally, wiand its neighborswjare 
adapted by  

 wj(t + 1) = wj(t) + α(t)hτ(wj)(v − wj(t))   (2) 

Where α(t) is a learning parameter decaying by time. When 
this iterative process is completed by a predetermined stop 
criterion, the neural units become the quantization 
representatives, achieving a lower quantization error than k-
means [25]. 
2. 1 2 SC of Data Representatives 
SC methods are multiple learning approaches, which 
successfully extract clusters with distinct characteristics, 
these methods follow nonparametric model approach and 
easy implementation [28]–[30]. They are based on eigen 
value decompositon of a graph Laplacian derived from 
pairwise similarities of the data points. This results in heavy 
computational load, which makes them unusable for large 

datasets such as remote sensing images having high spatial 
resolution. To exutilize SC advantages for these datasets, 
ASC performs SC on a reduced set of data representatives. 

 Being associated with relaxed optimization of 
graph-cut problems, SC constructs a graph Laplacian matrix 
L based on some optimization basis [28]–[30]. Due to the fact 
that there is no clear advantage among SC methods as long 
as a normalized graph Laplacian is used [31], [32], we 
employ the SC method in [29] to cluster the data 
representatives obtained by neural gas: Let G = (V, S) be a 
weighted undirected graph where its nodes V represent the 
representatives and the edges S are the pairwise similarities 
between them. The normalized Laplacian matrix Lnormis 
defined as 

 Lnorm= D−1/2SD−1/2    (3) 

based on a similarity matrix S and its diagonal degree 
matrix with di=∑ 𝑠𝑠(𝑖𝑖, 𝑗𝑗)𝑗𝑗 . Then, the SC method is as follows. 

1) Construct a similarity matrix S showing the 
pairwise similarities of the Nrrepresentatives to be clustered; 
2) Calculate D and Lnormusing the similarity matrix S; 
3) Find the k eigenvectors {e1,e2,...,ek} of Lnorm, 

associated with the k highest eigenvalues {λ1,λ2,...,λk}; 

4) Construct the Nr× k matrix E = [e1e2 ...ek] and obtain 
Nr× k matrix U by normalizing the rows of E to have  
norm1,i.e., 

𝑢𝑢𝑖𝑖𝑗𝑗 =
𝑒𝑒𝑖𝑖𝑗𝑗

�∑𝑘𝑘 𝑒𝑒𝑖𝑖𝑘𝑘 2
 

Cluster the Nrrows of U with k-means into k clusters. 
 

 The eigendecomposition of the graph Laplacian 
(ideally) produces a data projection where submanifolds 
(clusters) are well separated. A simple method in Step 5, 
such as k-means, is hence expected to produce a clear 
delineation among clusters. However, this is often not 
possible due to complex data structures, resulting in 
intersecting submanifolds. Therefore, consecutive k-means 
runs may result in distinct partitionings, due to the 
randomness in k-means algorithm [13]. 

2. 1. 3 Similarity Criteria for ASC 

The similarity criterion to be set for S plays a significant role 
to achieve an accurate cluster extraction. The pairwise 
similarities in SC s(i,j)s are traditionally determined by a 
Gaussian kernel based on the (Euclidean) distances 
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dEuc(xi,xj), with a global decaying parameter σ (to be 
optimally found through experiments [29] or a local 
σ ireflecting the distance to the kth-nearest neighbor of xi 

[33]) 

 𝑆𝑆𝐸𝐸𝑢𝑢𝐸𝐸 (𝑖𝑖, 𝑗𝑗) = exp�− 𝑑𝑑𝐸𝐸𝑢𝑢𝐸𝐸 (𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 )

2𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗
�  (4) 

 However, for ASC, new information types such as 
topology, density can be embedded into S for more effective 
definitionfor pairwise similarities of the data representatives 
[12], [17], [34]. A recent approach [12] uses a similarity 
measure (CONN) that exploits local density together with 
data topology on the representative level. CONN(i,j) shows 
the number of data points for which the representatives 
wiand wjare the pair of the bestmatching and the second-
BMUs. In other words, CONN(i,j) represents the local 
density distribution inside the subregionsVij∪Vjiof the 
Voronoi polygons Vi and Vj, (Vi is the set of data points v for 
which wiis the closest representative), i.e., 

 CONN(i,j) = |Vij∪Vji|  (5) 

where the sub-Voronoi polyhedron Vijis            

Vij = {v ϵVi : ||v - wj|| ≤ ||v - wk||  Ɐk ≠i}                  (6) 

By its definition, CONN is a weighted version of the 
induced Delaunay triangulation in [25] showing the 
neighbors according to the manifold, where weights 
indicate how the data points are distributed within the 
Voronoi polygons. CONN thus produces more accurate 
partitionings than those obtained by distance based 
approaches [12], [35]. The distance information is also 
integrated with CONN for ASC by a hybrid similarity 
criterion Shyb[34] where 

𝑆𝑆ℎ𝑦𝑦𝑦𝑦 (𝑖𝑖, 𝑗𝑗) = 𝑆𝑆𝐸𝐸𝑢𝑢𝐸𝐸 (𝑖𝑖, 𝑗𝑗)  × 𝑒𝑒𝑥𝑥𝑒𝑒 � 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖 ,𝑗𝑗 )
𝑚𝑚𝑚𝑚𝑥𝑥 𝑖𝑖 ,𝑗𝑗 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖 ,𝑗𝑗 )

�  (7) 

 The hybrid Shybactually scales the distance-based 
similarity with respect to local density distribution and data 
topology. If CONN(i,j) = 0, then two representatives wiand 
wjare not neighbors, which results in   shyb(i,j) = sEuc(i,j). 
Otherwise, their similarity is scaled by [1,e], producing a 
greater similarity upto a scale of e for the maximum 
CONN(i,j). 

Recently, geodesic-based approaches are also proposed for 
ASC [13], [17]. To calculate geodesic distances, a preliminary 
step is to determine a neighborhood graph showing the 
neighbor representatives in the manifold. A traditional way 
toconstruct this graph is the use of (mutual) k-nearest 

neighbor (k − nn) graph. If wiand wjare among their k-closest 
neighbors, they are neighbors. Then, the geodesic distance 
between wiand wjis the sum of Euclidean distances of their 
shortest path 

𝑑𝑑𝑔𝑔𝑒𝑒𝑔𝑔𝑘𝑘𝑔𝑔𝑔𝑔 �𝑤𝑤𝑖𝑖 ,𝑤𝑤𝑗𝑗 � =  ∑ 𝑑𝑑𝐸𝐸𝑢𝑢𝐸𝐸 (𝑙𝑙,𝑚𝑚)𝑙𝑙𝑚𝑚  ∈𝑆𝑆𝑃𝑃𝑘𝑘𝑔𝑔𝑔𝑔   (8) 

whereSPknn(wi,wj) is the set of edges in the shortest path 
between wiand wjcalculated with dEucand k − nngraph. The 
parameter k should be optimally set; however, k may be 
different for each representative. As a topology-based 
alternative reflecting local characteristics, CONN can be 
used for neighborhood graph in calculating geodesic 
distances to find specific number of neighbors for each 
representative [17]. The geodesic distance dgeoadjbased on 
CONN graph using Euclidean distances dEucis calculated as 

𝑑𝑑𝑔𝑔𝑒𝑒𝑔𝑔𝑚𝑚𝑑𝑑𝑗𝑗 �𝑤𝑤𝑖𝑖𝑤𝑤𝑗𝑗 � =  ∑ 𝑑𝑑𝐸𝐸𝑢𝑢𝐸𝐸 (𝑙𝑙,𝑚𝑚)𝑙𝑙𝑚𝑚∈𝑆𝑆𝑃𝑃𝑚𝑚𝑑𝑑𝑗𝑗 �𝑤𝑤𝑖𝑖𝑤𝑤𝑗𝑗 �   (9) 

whereSPadj(wi,wj) is the set of edges in the shortest path 
between wiand wjbased on dEucand CONN neighborhood 
graph. 

Instead of distances, local density distribution can also be 
used for geodesic distance calculation. Namely, using 
density-based distance 

𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝑤𝑤𝑖𝑖 ,𝑤𝑤𝑗𝑗� = � ∞ ,     𝐶𝐶𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒
𝑒𝑒
− 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑖𝑖 ,𝑗𝑗 )
𝑚𝑚𝑚𝑚𝑥𝑥 𝑦𝑦 ,𝑧𝑧𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑦𝑦 ,𝑧𝑧) ,𝑖𝑖𝑖𝑖  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑖𝑖 ,𝑗𝑗 )>0

� (10) 

a geodesic distance including both data topology and the 
data distribution can be defined as [17] 

𝑑𝑑𝑔𝑔𝑒𝑒𝑔𝑔𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔 �𝑤𝑤𝑖𝑖 ,𝑤𝑤𝑗𝑗 � =  ∑ 𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑙𝑙,𝑚𝑚)𝑙𝑙𝑚𝑚∈𝑆𝑆𝑃𝑃𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔 (𝑤𝑤𝑖𝑖 ,𝑤𝑤𝑗𝑗 )             (11) 

SPconn(wi,wj) is now the set of edges in the shortest path 
between wiand wjwith respect to dCONNdistance and CONN 
neighborhood. In addition, to exploit all available 
information for ASC on the representative level, a hybrid 
approach dgeohyb(wi,wj) merging both distance and density 
using CONN graph can be defined as 

𝑑𝑑𝑔𝑔𝑒𝑒𝑔𝑔ℎ𝑦𝑦𝑦𝑦 �𝑤𝑤𝑖𝑖 ,𝑤𝑤𝑗𝑗� =  ∑ 𝑑𝑑𝐸𝐸𝑢𝑢𝐸𝐸 (𝑙𝑙,𝑚𝑚)𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑙𝑙 ,𝑚𝑚)𝑙𝑙𝑚𝑚∈𝑆𝑆𝑃𝑃ℎ𝑦𝑦𝑦𝑦  (12) 

The geodesic distance-based similarities are then obtained 
by replacing dEucin (4) with the corresponding distance 
criterion. They achieve better clustering accuracies for a 
wide variety of datasets with different clustering statistics 
[13].  
2. 1. 4 Cluster Ensemble 
In order to achieve better performances with ensembles than 
with single partitionings, it is important to have diverse 
results obtained by different feature sets, subsets, clustering 
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methods, or different parameters for the same method. In 
our approach, we produce a set of (neural gas) data 
representatives and obtain diversity with various similarity 
criteria (measuring distance, topology, and density) and 
random initializations for k-means step in SC. By the use of 
data representatives, graph-based ensemble approach [18]—
which is infeasible for large data— can be easily applicable 
for an effective decision fusion. A graph G = (V,SCE) is 
constructed based on ns × nkmpartitionings obtained by ns 

similarity criteria and nkmk-means runs per similarity 
criterion, where SCE(i,j) shows the pairwise similarity of the 
representatives wiand wjwith respect to the number of 
partitionings for which they have the same label, i.e., 

 𝑆𝑆𝐶𝐶𝐸𝐸(𝑖𝑖, 𝑗𝑗) =  ∑ ∑ 𝑆𝑆𝑚𝑚 ,𝑘𝑘(𝑖𝑖, 𝑗𝑗)𝑔𝑔𝑘𝑘𝑚𝑚
𝑘𝑘=1

𝑔𝑔𝑠𝑠
𝑚𝑚=1    (13) 

 

where Sm,k(i,j) = 1 if wiand wjare in the same cluster; 

otherwise, Sm,k(i,j) = 0. An SC is applied to this graph to get 

the consensus labels for the representatives. This one-level 

ensemble is called as ASCE1. 

 Alternative to the traditional approach of fusing all 

results into one as in ASCE1, a two-level ensemble process 

(ASCE2) is used. In ASCE2,  first get an ensemble for a 

similarity criterion s∗from its corresponding partitionings 

obtained by nkmk-means runs, based on a similarity matrix 

𝑆𝑆𝐶𝐶𝐸𝐸2𝑚𝑚 =  ∑ 𝑆𝑆𝑠𝑠∗,𝑘𝑘
𝑔𝑔𝑘𝑘𝑚𝑚
𝑘𝑘=1 .Then fuse ns ensemble results of each 

similarity using 𝑆𝑆𝐶𝐶𝐸𝐸2𝑦𝑦 =  ∑ 𝑆𝑆𝑚𝑚
𝑔𝑔𝑠𝑠
𝑚𝑚=1 . 

 By its construction, the two-level ASCE2 first 

addresses the randomness in k-means and then exploits 

distinct results obtained by different information types. 

Note that  fuse the clustering labels at the representative 

level and then determine the labels of the data points 

according to the ensemble labels of their representatives. 

Table I outlines the proposed ASCE. 

2.2 Automated Extraction of Candidate Built-Up 
Regions 
Given a set of high-resolution remote sensing images 
covering different scenes, our objective is to simultaneously 
detect built-up regions from them. Generally speaking, 
urban environment is replete with corners from building 
roofs, road marks, and other man-made objects. If we could 

detect all such corner points from images, the built-up 
regions would be naturally implied from the density of 
corners. Thus, in this section, we use the corner feature to 
infer the locations of potential built-up regions in the given 
images. Corner detection has been a longstanding problem 
in computer vision. In the literature, a large number of 
methods have been proposed, and the most famous one 
should be Harris corner detector [7]. In order to achieve a 
reliable extraction of corners from built-up areas, we 
proposed two criterions, which take both local and global 
constraints into consideration, to validate and filter a large 
set of initial extracted Harris corners. 
 
Extraction of Candidate Built-Up Regions by Grouping 
Corner Points 
Generally, corners in the built-up area tend to closely locate 
in the neighboring spatial domain with high density. For a 
non-built-up area, these corners are more likely to be 
sparsely distributed.  
 
 This means that, if an image pixel (xi,yi) belongs to 
a built-up area, we expect that there are more corner points 
in its neighborhood. With this observation, we define the 
following likelihood function to measure the possibility that 
a pixel (xi,yi) belongs to a built-up area: 
 

 
      (14) 

where(xk,yk) represents the spatial coordinate of the 
extracted N2 corner points, for k = 1,...,N2. 

 The likelihood function highlights the built-up 
region in the pixel neighborhood. If it is a good candidate 
for the built-up region, a high value LS(xi,yi) is expected. On 
the basis of this, we first compute the likelihood of each 
pixel (xi,yi) and then obtain candidate built-up regions by 
the binarization processing of an image pixel based on the 
threshold value, we provide the detected candidate built-up 
area (as a yellow curve) from Fig. 2 in Fig. 3(a). We also 
provide the ground truth data in Fig. 3(b).  
 
Feature Extraction of Candidate Built-Up Regions 
Since the built-up region has unique texture in comparison 
with a natural area, here, we use the texture feature to 
describe the built-up region. In our work, the texture feature 
is obtained by the following three steps. 
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Step 1) Convolving the panchromatic band of each 
candidate region Riwith a Gabor filter bank [11] at K 
scales and S orientations (in the experiment, we set K = 
4 and S = 6) to generate filter responses. 

Step 2) The resultant filter responses are aggregated and 
clustered into textons using the k-means algorithm, 
which are further used to form a texton dictionary Ω. 

Step 3) Ak-dimensional histogram descriptor hi is 
constructed for each candidate region Riby labeling 
each filter response with the texton which lies closest to 
it in the dictionary. 

 

3 EXPERIMENTAL RESULTS 
We evaluate the performance of the proposed ASCE2 
performance based on accuracy (percentage of correctly 
labeled data), Adjusted Rand Index (ARI) [36], and 
Normalized Mutual Information (NMI) [37] using five 
remote-sensing images from www.satimagingcorp.com 
(Geoeye-1, Worldview-2, Ikonos, Spot-7) which are 
commonly available. 

3. 1 Datasets 

The Bondi beach, Autralia (September, 2010) image is taken 
from Geoeye-1satellite is available from 
www.satimagingcorp.com . It is a remote-sensing image of 
3000 × 3000 pixels. It has six classes: beach, ocean, road, 
park, residential, and industrial. Fig. 2 (a) shows Natural 
color composite using red, green, and blue spectral bands of 
the Geoeye-1 satellite image. Then the pixels are labeled to 
these eight classes to represent the ground truth.  
 As a high spatial resolution example, we use a 
geoeye-1 image (0.5-m spatial resolution) for land-cover 
identification. The (3000 × 3000-pixel) image covers an 
approximately 3.5km2 region on Copacabana beach with 
different classes like Sea, Road, forest, Residential area, 
Beach. 
 Fig. 3 (a) provides a natural color composite of the 
image. The test pixels were randomly determined 
proportional to their land coverage in the study area, using 
field study and domain knowledge of the national experts 
[39]. Supervised classification accuracies for these classes 
were 76.4% for eight multispectral bands and 83.2% for 
fused features (eight multispectral and four Gabor features). 
We therefore use fused features to evaluate the proposed 
ASCE2. Fig. 3 (b) Provides clustermap with different classes. 

 The image from Ikonos Satellite is taken to 

determine the type of land cover. Fig. 4. (a) Shows the 

natural color composites of Rio-de-Janeiro port, Brazil for 

evaluation of land cover. It is a remote-sensing image of 

1950 × 1950 pixels. It has classes like ocean, road, parks, 

residential and industrial areas. Fig. 4. (b) Shows the 

clustering map of the image. 

 Fig. 5. (a) Shows the natural color composites of 

Rice fields in Inkadate city of Japan. It is a remote sensing 

image of 3000 × 3000 pixels taken by Geoeye-1 Satellite on 

July 15, 2010. This is to observe the land cover of Rice fields 

around the City. This image contains several classes like 

Rice fields, Roads, Residential area etc. By using the 

clustering ensemble on this image we obtained the 

clustering map of the image. 
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Figure. 2. Bondi beach, Australia from Geoeye-1. (a) Natural color 
composite of the dataset (3000×3000 pixels). (b) Resulting clustermap 
obtained by ASCE. Each color indicates one of the six extracted 
clusters. (c) Clustermap obtained by unsupervised clustering. 

 

 

 

Figure. 3. Geoeye-1 image of Copacabana beach. (a) Natural color 
composite using red, green, and blue spectral bands of the Worldview2 
image. (b) ASCE2 cluster map with land cover types. (c) Clustermap 
obtained by unsupervised clustering. 
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Figure. 4. Geoeye-1 image of Rio-de-janeiro. (a) Natural color 
composite using red, green, and blue spectral bands of the Worldview2 
image. (b) ASCE2 cluster map with land cover types. (c) Clustermap 
obtained by unsupervised clustering. 

 

 

 

Figure. 5. MultitemporalRapidEye images of (a) Rice fields in japan (b) 
ASCE2 cluster map with land cover types. (c) Clustermap obtained by 
unsupervised clustering. 
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3. 2 Performance Evaluation 

We use three measures to evaluate the partitionings of these 
remote-sensing images: accuracy, ARI, and NMI. Accuracy 
is the percentage of correctly clustered data points. ARI [36] 
is a measure of agreement between the labels gathered by a 
clustering process and the other labels defined by external 
criteria for the same data [40]. ARI recognize not only the 
correct separation of data points into different clusters but 
also the relation between data points of the same cluster, to 
sensitively classify the relation between each datum and its 
target label for multiclass problems [40]. NMI is used to 
compare the resulting partitionings in an information 
theoretical way [37]. 

TABLE 2 

Percentage of Land Cover Detected Using Spectral 

Clustering Ensemble 

 

Label 

SCE 

Gondi 

beach 

Copacabana 

beach 

Rio-de-

janeiro 

port 

Rice 

fields  

Japan 

Park 96.98 116.77 95.18 113.45 

Water 110.82 90.50 94.73 89.10 

Beach 94.17 93.32 102.04 96.51 

Urban 92.05 105.15 98.64 108.17 

Roads 105.73 89.98 121.01 93.88 

 

Confusion Matrix:  

• True positive = correctly identified 
• False positive = incorrectly identified 
• True negative = correctly rejected 
• False negative = incorrectly rejected 
 
 
• True Positive Rate (TPR):  It is the proportion of 
positive cases that were correctly identified       

𝑇𝑇𝑃𝑃𝑇𝑇 =
𝐴𝐴

A + B
 

• Accuracy (AC):  is the proportion of the total 
number of predictions that were correct.  
     
 𝐴𝐴𝐸𝐸𝐸𝐸𝑢𝑢𝑒𝑒𝑚𝑚𝐸𝐸𝑦𝑦 = 𝐴𝐴+𝐷𝐷

𝐴𝐴+𝐵𝐵+𝐶𝐶+𝐷𝐷
 

 
• The False Positive Rate (FPR): is the proportion of 
negatives cases that were incorrectly classified as positive. 
      
 𝐹𝐹𝑃𝑃𝑇𝑇 = 𝐶𝐶

𝐶𝐶+𝐷𝐷
 

Table 2 and table 3 show the percentage of land cover that 

has been detected correctly by Spectral Clustering Ensemble 

algorithm and Unsupervised Clustering algorithm using 

Harris Corner Detector respectively. Apart from the classes 

mentioned in the table, there is chance of other areas. We 

have considered only the areas which are common in the 

different images taken by different Satellites.   

TABLE 3 

Percentage of Land Cover Detected Using Unsupervised 

Clustering 

 

Label 

Unsupervised 

Gondi 

beach 

Copacabana 

beach 

Rio-de-

janeiro 

port 

Rice 

fields  

Japan 

Park 96.07 102.56 105.19 117.94 

Water 113.67 94.34 96.28 127.67 

Beach 90.35 86.33 89.51 81.53 

Urban 93.31 94.77 94.96 87.00 

Roads 103.33 110.93 106.22 94.31 

 

 

 

 

TABLE 4 
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Performance Measures of Spectral Clustering Ensemble 

Method SCE 

Area Gondi 

beach 

Copacabana 

beach 

Rio-de-

janeiro 

port 

Rice 

fields  

Japan 

TPR 0.8400 0.8557 0.8630 0.8582 

FPR 0.1600 0.1443 0.1370 0.1418 

Accuracy 89.9927 90.9783 91.4297 91.1360 

ARI 0.6390 0.6646 0.6860 0.6672 

NMI 0.1141 0.0413 0.5976 0.0613 

 

TABLE 5 

 Performance Measures of Unsupervised Clustering 

Method Unsepervised 

Area Gondi 

beach 

Copacabana 

beach 

Rio-de-

janeiro 

port 

Rice 

fields  

Japan 

TPR 0.8403 0.8544 0.8612 0.8565 

FPR 0.1597 0.1456 0.1388 0.1435 

Accuracy 90.0094 91.8940 92.3246 92.0380 

ARI 0.6218 0.6194 0.6986 0.6911 

NMI 0.0824 0.0587 0.0663 0.0740 

 

Observing the values of True Positive Rate (TPR) and False 
Positive Rate (FPR) from tables 4 and 5, suppose if TPR is 
0.84 or 84%, it means that every time you call a positive 
there is a probability of 16% of that being wrong, which is 
the FPR. Similarly if FPR is 16% or 0.1600, which means that 
every time you call a negative there is probability of 84% 
being right. 
   By analyzing each pair of elements ARI 
will measure not only the correct separation of elements 
belonging to different classes but also the relation between 

elements of the same class. In a certain way this measure 
pays more attention to the relation between elements than to 
the relation between each element and its target label. We 
can say that ARI evaluates the capability of the algorithm to 
separate the elements belonging to different classes. From 
table 4 and table 5, the values for Adjusted Rand Index 
(ARI) are closer to 1 than 0. This indicates that these 
algorithms will separate the elements belonging to different 
classes effectively.  If the ARI value is 1 (maximum) 
meaning that the algorithm is doing the exact distinction 
between classes. Observing another parameter Normalized 
Mutual Information (NMI) from table 4 and table 5, the 
value is very close to 0, which indicates that only very small 
portion of two clusters are similar. That means cluster are 
almost unique.  Accuracy is another important factor which 
is the proportion of the total number of predictions that 
were correct. From table 4 and table 5, it is clear that large 
portions of the original image is predicted correctly by using 
Spectral Clustering Ensemble and Unsupervised clustering 
using Harris Corner Detector algorithms. 

4 CONCLUSION 

High spatial resolution has brought new test for remote-
sensing image analysis while creating emerging applications 
due to improved abilities of fine details for accurate 
agriculture, homeland security, and urban monitoring. A 
longstanding task for remote-sensing images, and for those 
with high spatial resolution, is the necessity of 
accuratelabelled training sets (which can only be obtained 
purely from the field visits) to achieve effective land-cover 
maps with many supervised approaches [41]. 

 While active learning approaches [42] address this 
by reducing the required labeled samples and guiding the 
user to label few selected samples, unsupervised clustering 
uses no labeled samples. Recently, ASC methods enable the 
spectral partitioning of large datasets such as remote-
sensing images with high spatial resolution, to utilize its 
advantages of extracting clusters with various 
characteristics without a parametric model. The ASC 
methods also enable effective manifold-based information 
representation criteria that are optimally selected for 
corresponding application. To harness different information 
types in ASC without a need for optimality selection, we 
introduced an SCE composed of three stages: 1) neural gas 
quantization to obtain data representatives; 2) SC of these 
representatives with recent similarity criteria derived from 
different information types exploiting distinct manifold 
characteristics; and 3) a two-level graphbased ensemble of 
obtained partitionings. We showed that the SCE improves 
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the clustering quality with respect to three measures 
(accuracy, ARI, and NMI) for five remote-sensing images. 
Based on its success on remote-sensing applications for 
land-cover identification, the SCE can be used for accurate 
cluster extraction from large remote-sensing-images in an 
unsupervised manner. The SCE can be helpful especially for 
agricultural monitoring (encompassing a whole country) 
where it is often hard and expensive to obtain labeled 
training samples for supervised classification methods. 

 The SCE is based on data representative level 
ensemble approach, which in turn limits the ensemble on 
one kind of representative selection (neural gas in our 
study). However, the use of different quantization 
approaches (such as k-means, selforganising maps, or their 
variants) or different initializations may produce distinct 
partitionings, which are then to be fused by an ensemble 
approach. Yet, graph-based ensemble would be infeasible at 
the data level for large remote-sensing images due to its 
complexity, while maximum voting would be unsuccessful 
based on our preliminary studies. An ensemble approach 
tailored for ASC of large datasets would help for more 
effective partitionings.  With its current settings using 
neural gas quantization, the proposed SCE already achieves 
significant performances for the remote-sensing images in 
this study. 
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